Materials of Interest and Associated Crystal Growth Techniques

Dataset doi link: https://doi.org/10.34863/w4qs-f408

Paper dois:
1: https://arxiv.org/abs/2209.09370

Authors: Tanya Berry1-3, Nicholas Ng1-2, Tyrel M. McQueen1-2,4

Corresponding email: tberry@ucdavis.edu, nng3@jhu.edu, and mcqueen@jhu.edu

Author affiliations:
1: Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
2: Institute for Quantum Matter, William H. Miller III Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218, United States
3: Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
4: Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States

Single crystal growth is a widely explored method of synthesizing materials in the solid state. The last few decades have seen significant improvements in the techniques used to synthesize single crystals, and much of this information has been collected and distributed via a number of different papers and textbooks for the novice. However, what is often missing from these resources are perspectives on how to use these techniques in unusual ways, frequently combining aspects from different fields of chemistry. These variations on known single crystal growth techniques can help effect successful crystal growth in situations where the conventional technique might otherwise fail, as well as providing potential control over structure defects. We present a paper that informs readers about known single crystal growth techniques, lesser-known variations on these techniques that have assisted in the optimization of defect control as well as enabling unconventional materials syntheses, and pre-growth processing methods that can help raise the chances of successful single crystal growth. We also provide examples a number of examples of materials that have been successfully synthesized with each individual technique, many of which have present use cases such as oxides for laser development. Finally, we offer a case study focusing on the floating zone technique, in which we delve into the mechanisms of action, the use of laser diodes, and some challenges that present themselves. The presence of all of these sections in a single paper will assist novice crystal growers in comparing, contrasting, and ultimately selecting a suitable technique or techniques for their experiments. We also offer a perspective on how to think about these synthesis methods in a larger scheme. For example, we consider the temperature interdependence with the reaction time as well as ways to carry out synthesis to scale up and address some outstanding synthesis challenges.

In this DOI repository, we present a number of examples of materials that have been successfully synthesized with each individual technique, many of which have present use cases, as well as our full list of references for our corresponding paper.

Keywords: Crystal growth, Materials, Solid state, Crystal growth techniques
OxidesIntermetallicsNitridesSulfidesHalides
Floating ZoneRare earth, alkali, alkaline earth, & transition metal oxides163RuAl, TiAl, TiAlNb, Mn3Si, TiNb164Li3N165CdS169NaCl, KCl, KBr, KI, LiF19
NbN-NbC binaries166
Cr2N167
TiN, ZrN168
Flux GrowthTransition metal, alkali, & alkaline earth oxides20,56-59AV3Sb5,
A = Alkali62
h-BN64ZnS60Eu4OCl6, Eu4OBr6171
EuGa2Sb263GaN65NaCrS2, NaInS2, CdS61Tl2MXn (M = La, Hf; X = Cl, Br; n = 5, 6)172
Multicomponent nitrides170
Chemical Vapor TransportZnO109, WO2, WO3173CrB, CrB2173InN nanowires175MoS2, WS228,106, ReS2, Mo2S328ZrNX (X = Cl, Br, I)177-178
Cr3Si, Cr5Si3, CrSi, CrSi2173BN nanotubes176CrOCl, MoXYn
(X = O, S;
Y = Cl, Br;
n = 1, 2, 3), WBr2173
NixGa1-x,
CuxGa1-x174
Arc MeltingCeMO3 (M = Al, Ga)75Rare earth intermetallics54BN nanotubes76Zr3+xS477
Zn3Ta2O853Transition metal intermetallics55, 159, 179-180VN181Hf2S183
Medium- & high-entropy alloys69-70AlN nanowires & nanoparticles182
BridgmanY3Al5O12110CdTe, CdZnTe107GaS186KCaI3190
β-Ga2O3184AgGaS2187Alkaline earth mixed halides191
Bi2S3188
ZnO185ZnS, CdS189Ternary alkali lead halides192
CzochralskiBaTiO3, TiO2193GaSb198Li3N200ZnS, CdS189Rare earth halides201
β-Ga2O3194-195
Y3Al5O12194KCl202
Gd3Ga5O12112Rare earth tetraborides199BaBrCl68
LiAlO2196BaMgF4194
(La,Sr)(Al,Ta)O3197
HydrothermalZnO37FeSn2203VN207ZnS37CsPb2Cl5211
WO398IrRu204BN208CdS97CsPbBr395
Transition metal oxides38, 98-101Pd3Pb205GaN96Co2RuS6209Rb2SeOCl4*H2O212
SnSe206NiS, Co9S8210CsPb2(Cl1-xBrx)5211
SolvothermalPerovskite-structured oxides213Binary Pt-based, Pd-based, and NiCo nanocrystals214Ta3N5, TaN, MN (M = Zr, Hf, Nb)216CdS218CsPbX3 (X = Cl, Br, I)220
Pt2In3215Cu3N217CdIn2S4219CsSnX3 (X = Cl, Br, I)221
MicrowaveSnO2222Mg2Sn224AlN226-228, TiN, VN227-228, GaN228ZnS nanoballs81CsPbX3 (X = Cl, Br, I)232
NiO223Bi2S3, Sb2S3229BiOX (X = Cl, Br, I)233
Eu:SrTiO3102Cu11In9, Ag3In, AgIn2, Ag9In4, AuIn2225Li3FeN2, Li5TiN3, Li3AlN2229ZnCdS230Pb5(VO4)3X (X = Cl, Br, I)234
LiV3O8, KNb3O8, KTiNbO5, KSr2Nb3O1025Ag2S, MS(M = Cd, Zn, Co, Pb, Cu)231
Spark Plasma SinteringAl:ZnO235NbB2237TiN238Cu2S240TlxCsBr(X = 0.01, 0.1, 0.2, 0.3, 0.5%)243
CoSb336Bi2S3125
Y3Al5O12124AlCuSiZnFe71UN126-127Fe7-xCoxS8241
AlFeCuCrMgx121TlxRbBr(X = 0.1, 0.5, 1, 3%)244
MoOx236CoCrFeMnNi122Si3N4239AgBi3S5242


References
  1. Berry, T., Varnava, N., Ryan, D. H., Stewart, V. J., Rasta, R., Heinmaa, I., Kumar, N., Schnelle, W., Bhandia, R., Pasco, C. M., Armitage, N. P., Stern, R., Felser, C., Vanderbilt, D., and McQueen, T. M. Bonding and Suppression of a Magnetic Phase Transition in EuMn2P2. J. Am. Chem. Soc. 2023, 145, 8, 4527-4533.
  2. Pasco, C. M., El Baggari, I., Bianco, E., Kourkoutis, L. F., and McQueen, T. M. Tunable Magnetic Transition to a Singlet Ground State in a 2D van der Waals Layered Trimerized Kagomé Magnet. ACS Nano 2019, 13, 9457-9463.
  3. Berry, T., Nicklas, M., Yang, Q., Schnelle, W., Wawrzynczak, R., Foerster, T., Gooth, J., Felser, C., and McQueen, T. M. Bonding and Electronic Nature of the Anionic Framework in LaPd3S4. Chem. Mater. 2022, 34, 10390-10398.
  4. Sinha, M., Vivanco, H.K., Wan, C., Siegler, M.A., Stewart, V.J., Pressley, L.A., Berry, T., Wang, Z., Johnson, I., Chen, M., Tran, T.T., Phelan, W.A., McQueen, T.M. Twisting of 2D Kagome Sheets in Layered Intermetallics ACS Central Science 2021, 7, 1381-90.
  5. Eagar, T. W. Bringing new materials to market. Technology Review 1995, 98(2), 42-49.
  6. Zones, S. I. Translating new materials discoveries in zeolite research to commercial manufacture. Microporous and Mesoporous Materials 2011, 144(1-3), 1-8.
  7. Recatala-Gomez, J., Suwardi, A., Nandhakumar, I., Abutaha, A., and Hippalgaonkar, K. Toward Accelerated Thermoelectric Materials and Process Discovery. ACS Appl. Energy Mater. 2020, 3(3), 2240-2257.
  8. Lin, W. and Benson, K. E. The Science and Engineering of Large-Diameter Czochralski Silicon Crystal Growth. Ann. Rev. Mater. Sci. 1987, 17, 273-298.
  9. Series, R. W. and Hurle, D. T. J. The use of magnetic fields in semiconductor crystal growth. J. Cryst. Growth 1991, 113(1-2), 305-328.
  10. Hourai, M., Nagashima, T., Nishikawa, H., Sugimura, W., Ono, T., and Umeno, S. Review and Comments for the Development of Point Defect-Controlled CZ-Si Crystals and Their Application to Future Power Devices. Phys. Status Solidi A 2019, 216, 1800664.
  11. Lan, C. W., Lan, W. C., Lee, T. F., Yu, A., Yang, Y. M., Hsu, W. C., Hsu, B., and Yang, A. Grain control in directional solidification of photovoltaic silicon. J. Cryst. Growth 2012, 360, 68-75.
  12. Möller, H. J., Kaden, T., Scholz, S., and Würzner, S. Improving solar grade silicon by controlling extended defect generation and foreign atom defect interactions. Appl. Phys. A 2009, 96, 207-220.
  13. Kulshreshtha, P. K., Yoon, Y., Youssef, K. M., Good, E. A., and Rozgonyi, G. Oxygen Precipitation Related Stress-Modified Crack Propagation in High Growth Rate Czochralski Silicon Wafers. J. Electrochem. Soc. 2011, 159(2), H125.
  14. Eo, Y. S. et al. Transport gap in SmB6 protected against disorder. Proceedings of the National Academy of Sciences USA 116, 12638-12641 (2019).
  15. Sinha, M. et al. Introduction of spin centers in single crystals of Ba2CaWO6-d. Phys. Rev. Mater. 3, 125002 (2019).
  16. Arpino, K. E., Trump, B. A., Scheie, A. O., McQueen, T. M., Koohpayeh, S. M. Impact of stoichiometry of Yb2Ti2O7 on its physical properties. Phys. Rev. B 95, 94407 (2017).
  17. Berry, T., Bernier, S., Auffermann, G., McQueen, T. M., Phelan, W. A. Laser floating zone growth of SrVO3 single crystals. J. Cryst. Growth 583, 126518 (2022).
  18. Pressley, L. A., Torrejon, A., Phelan, W. A., McQueen, T. M. Discovery and Single Crystal Growth of High Entropy Pyrochlores. Inorg. Chem. 59, 23, 17251 (2020).
  19. Warren, R. W. Floating Zone Growth of Single Crystal Alkali Halides. Rev. Sci. Instrum. 1962, 33, 1378.
  20. Bugaris, D. E. and zur Loye, H-C. Materials Discovery by Flux Crystal Growth: Quarternary and Higher Order Oxides. Angew. Chem. Int. Ed. 2012, 51(16), 3780-3811.
  21. Schütz, M. B., Xiao, L., Lehnen, T., Fischer, T., and Mathur, S. Microwave-assisted synthesis of nanocrystalline binary and ternary metal oxides. Int. Mater. Rev. 2018, 63(6), 341-374.
  22. Canfield, P. C. and Fisk, Z. Growth of single crystals from metallic fluxes. Philos. Mag. B 1992, 65(6), 1117-1123.
  23. Jesche, A. and Canfield, P. C. Single crystal growth from light, volatile and reactive materials using lithium and calcium flux. Philos. Mag. 2014, 94(21), 2372-2402.
  24. Slade, T. J. and Canfield, P. C. Use of Refractory-Volatile Element Deep Eutectic Regions to Grow Single Crystalline Intermetallic Compounds. Z. Anorg. Allg. Chem. 2022, 648, e202200145.
  25. Yang, G., Kong, Y., Hou, W., and Yan, Q. Heating Behavior and Crystal Growth Mechanism in Microwave Field. J. Phys. Chem. B 2005, 109, 1371-1379.
  26. Schmidt, P., Binnewies, M., Glaum, R., and Schmidt, M. Chemical Vapor Transport Reactions-Methods, Materials, Modeling. Advanced Topics on Crystal Growth; InTech, 2013.
  27. Binnewies, M., Schmidt, M., and Schmidt, P. Chemical Vapor Transport Reactions-Arguments for Choosing a Suitable Transport Agent. Z. Anorg. Allg. Chem. 2017, 643, 1295-1311.
  28. Hu, D., Xu, G., Xing, L., Yan, X., Wang, J., Zheng, J., Lu, Z., Wang, P., Pan, X., and Jiao, L. Two-Dimensional Semiconductors Grown by Chemical Vapor Transport. Angew. Chem. Int. Ed. 2017, 56, 3611-3615.
  29. Bridgman, P. W. Certain Physical Properties of Single Crystals of Tungsten, Antimony, Bismuth, Tellurium, Cadmium, Zinc, and Tin. Proc. Am. Acad. Arts Sci. 1925, 60(6), 305-383.
  30. Stockbarger, D. C. The Production of Large Single Crystals of Lithium Fluoride. Rev. Sci. Instrum. 1936, 7, 133-136.
  31. Zulehner, W. Czochralski Growth of Silicon. J. Cryst. Growth 1983, 65, 189-213.
  32. Depuydt, B., Theuwis, A., and Romandic, I. Germanium: From the first application of Czochralski crystal growth to large diameter dislocation-free wafers. Mater. Sci. Semicond. Proc. 2006, 9, 437-443.
  33. Taishi, T., Ise, H., Murao, Y., Osawa, T., Suezawa, M., Tokumoto, Y., Ohno, Y., Hoshikawa, K., and Yonenaga, I. Czochralski-growth of germanium crystals containing high concentrations of oxygen impurities. J. Cryst. Growth 2010, 312, 2783-2787.
  34. Li, H., Ghezal, E. A., Nehari, A., Alombert-Goget, G., Brenier, A., and Lebbou, K. Bubbles defects distribution in sapphire bulk crystals grown by Czochralski technique. Opt. Mater. 2013, 35, 1071-1076.
  35. Tokita, M. Progress of Spark Plasma Sintering (SPS) Method, Systems, Ceramics Applications and Industrialization. Ceramics 2021, 4(2), 160-198.
  36. Omori, M. Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater. Sci. Eng. A 2000, 287, 183-188.
  37. Laudise, R. A. and Ballman, A. A. Hydrothermal Synthesis of Zinc Oxide and Zinc Sulfide. J. Phys. Chem. 1960, 64(5), 688-691.
  38. Whittingham, M. S. Hydrothermal synthesis of transition metal oxides under mild conditions. Curr. Opin. Solid State Mater. Sci. 1996, 1, 227-232.
  39. Kanatzidis, M. G., Pöttgen, R., and Jeitschko, W. The Metal Flux: A Preparative Tool for the Exploration of Intermetallic Compounds. Angew. Chem. Int. Ed. 2005, 44(43), 6996-7023.
  40. Scheel, H. J. Developments in Crystal Growth from High-Temperature Solutions. Progr. Cryst. Growth Char. 1982, 5, 277-290.
  41. Elwell, D. and Neate, B. W. Mechanisms of crystal growth from fluxed melts. J. Mater. Sci. 1971, 6, 1499-1519.
  42. Tachibana, M. Beginner's Guide to Flux Crystal Growth. Springer. 2017.
  43. Thomas, E. L., Millican, J. N., Okudzeto, E. K., and Chan, J. Y. Crystal Growth and the Search for Highly Correlated Intermetallics. Comments Mod. Chem. 2006, 27(1-2), 1-39.
  44. Canfield, P. C. and Fisher, I. R. High-temperature solution growth of intermetallic single crystals and quasicrystals. J. Cryst. Growth 2001, 225(2-4), 155-161.
  45. Pistwala, N., Rout, D., Saurabh, K., Bag, R., Karmakar, K., Harnagea, L., and Singh, S. Crystal growth of quantum materials: a review of selective materials and techniques. Bull. Mater. Sci. 2022, 45, 10.
  46. Schmehr, J. L. and Wilson, S. D. Active Crystal Growth Techniques for Quantum Materials. Ann. Rev. Mater. Res. 2017, 47, 8.1-8.22.
  47. Milisavljevic, I. and Wu, Y. Current status of solid-state single crystal growth. BMC Mater. 2020, 2(2).
  48. Sales, B. Introduction to the Synthesis of Quantum Materials: Some General Guidelines and A Few Tricks. Fundamentals of Quantum Materials 2021, pp. 1-17.
  49. Kimura, S. and Kitamura, K. Floating Zone Crystal Growth and Phase Equilibria: A Review. J. Am. Ceram. Soc. 1992, 75(6), 1440-1446.
  50. Lan, C. W. Recent progress of crystal growth modeling and growth control. Chem. Eng. Sci. 2004, 59, 1437-1457.
  51. Hulliger, J. Chemistry and Crystal Growth. Angew. Chem. Int. Ed. 1994, 33, 143-162.
  52. Phelan, W. A., Zahn, J., Kennedy, Z., and McQueen, T. M. Pushing boundaries: High pressure, supercritical optical floating zone materials discovery. J. Solid State Chem. 2019, 270, 705-709.
  53. Yajima, R., Kamada, K., Takizawa, Y., Yoshino, M., Murakami, R., Kim, K. J., Horiai, T., Yamaji, A., Kurosawa, S., Yokota, Y., Sato, H., Toyoda, S., Ohashi, Y., Hanada, T., and Yoshikawa, A. Growth of Zn3Ta2O8 crystal scintillator by a novel melt growth technique named shielded arc melting method. Opt. Mater.: X 2022, 14, 100149.
  54. Menovsky, A. and Franse, J. J. M. Crystal Growth of Some Rare Earth and Uranium Intermetallics from the Melt. J. Cryst. Growth 1983, 65, 286-292.
  55. Meier, W. R., Du, M-H., Okamoto, S., Mohanta, N., May, A. F., McGuire, M. A., Bridges, C. A., Samolyuk, G. D., and Sales, B. C. Flat bands in the CoSn-type compounds. Phys. Rev. B 2020, 102, 075148.
  56. Voronkova, V.I. et al. Flux Growth and Properties of Oxide Crystals. Growth of Crystals Vol. 19, Eds. Givargizov, E.I. and Grinberg, S.A. Translated by Wester, D.W., Consultants Bureau, NY, 1989.
  57. Timofeeva, V.A. Flux Growth of Crystals [in Russian], Nauka, Moscow (1978).
  58. Elwell, D. and Scheel, H.J. Crystal Growth from High-temperature Solutions. Academic Press, London (1975).
  59. A.A. Chernov, et al. Modern Crystallography Vol. 3 [in Russian], Nauka, Moscow (1980).
  60. Parker, S. G. and Pinnell, J. E. Molten Flux Growth of Cubic Zinc Sulfide Crystals. J. Cryst. Growth 1968, 3/4, 490-495.
  61. Scheel, H. J. Crystallization of Sulfides from Alkali Polysulfide Fluxes. J. Cryst. Growth 1974, 24/25, 669-673.
  62. Ortiz, B. R., Gomes, L. C., Morey, J. R., Winiarski, M., Bordelon, M., Mangum, J. S., Oswald, I. W. H., Rodriguez-Rivera, J. A., Neilson, J. R., Wilson, S. D., Ertekin, E., McQueen, T. M., and Toberer, E. S. New kagome prototype materials: discovery of KV3Sb5, RbV3Sb5, and CsV3Sb5. Phys. Rev. Mater. 2019, 3, 094407.
  63. Berry, T., Parkin, S. R., and McQueen, T. M. Antiferro- and metamagnetism in the S = 7/2 hollandite analog EuGa2Sb2. Phys. Rev. Mater. 2021, 5, 114401.
  64. Li, J., Wang, J., Zhang, X., Elias, C., Ye, G., Evans, D., Eda, G., Redwing, J. M., Cassabois, G., Gil, B., Valvin, P., He, R., Liu, B., and Edgar, J. H. Hexagonal Boron Nitride Crystal Growth from Iron, a Single Component Flux. ACS Nano 2021, 15, 7032-7039.
  65. Von Dollen, P. M. Sodium Flux Growth of Bulk Gallium Nitride. University of California Santa Barbara; ProQuest Dissertations Publishing 2016.
  66. Bradshaw, A. R. and Fort, D. A laboratory-scale arc furnace for melting volatile metals under elevated inert gas pressures. Rev. Sci. Instrum. 1992, 63, 5459.
  67. Nielsen, M. L. and Johns, I. B. A Laboratory Arc-Melting Furnace. Rev. Sci. Instrum. 1953, 25(6), 596-598.
  68. Olson, J. C. A Laboratory Arc Melting Furnace for the Production of Alloy Samples from Reactive Metals. Defense Technical Information Center, 1961.
  69. Li, Q., Zhang, H., Li, D., Chen, Z., Wang, F., and Wu, M. Comparative study of the microstructures and mechanical properties of laser metal deposited and vacuum arc melted refractory NbMoTa medium-entropy alloy. International Journal of Refractory Metals & Hard Materials 2020, 88, 105195.
  70. Joseph, J., Jarvis, T., Wu, X., Stanford, N., Hodgson, P., and Fabijanic, D. M. Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys. Mater. Sci. Eng. A 2015, 633, 184-193.
  71. Sharma, A., Oh, M. C., and Ahn, B. Microstructural evolution and mechanical properties of non-Cantor AlCuSiZnFe lightweight high entropy alloy processed by advanced powder metallurgy. Mater. Sci. Eng. A 2020, 797, 140066.
  72. Johnson, D. D., Inui, H., and Yamaguchi, M. Crystal Growth of TiAl alloys. Intermetallics 1998, 6, 647-652.
  73. Lekatou, A., Sfikas, A. K., Petsa, C., and Karantzalis, A. E. Al-Co Alloys Prepared by Vacuum Arc Melting: Correlating Microstructure Evolution and Aqueous Corrosion Behavior with Co Content. Metals 2016, 6, 46.
  74. Meier, W. R., Du, M-H., Okamoto, S., Mohanta, N., May, A. F., McGuire, M. A., Bridges, C. A., Samolyuk, G. D., and Sales, B. C. Flat bands in the CoSn-type compounds. Phys. Rev. B 2020, 102, 075148.
  75. Shishido, T., Zheng, Y., Saito, A., Horiuchi, H., Kudou, K., Okada, S., and Fukuda, T. Microstructure, thermal properties and hardness of the CeMO3 (M = Al, Ga) synthesized by arc-melting method. J. Alloys Comp. 1997, 260, 88-92.
  76. Oku, T. Synthesis and atomic structures of boron nitride nanotubes. Phys. B 2002, 323, 357-359.
  77. Johnston, D. C. and Moodenbaugh, A. Zr3+xS4: A New Superconducting Binary Sulfide. Phys. Lett. 1972, 41A(5), 447-448.
  78. Tompsett, G. A., Conner, W. C., and Yngvesson, K. S. Microwave Synthesis of Nanoporous Materials. Chem. Phys. Chem. 2006, 7(2), 296-319.
  79. Kitchen, H. J., Vallance, S. R., Kennedy, J. L., Tapia-Ruiz, N., Carassiti, L., Harrison, A., Whittaker, A. G., Drysdale, T. D., Kingman, S. W., and Gregory, D. H. Modern Microwave Methods in Solid-State Inorganic Materials Chemistry: From Fundamentals to Manufacturing. Chem. Rev. 2014, 114(2), 1170-1206.
  80. Giguere, R. J., Bray, T. L., Duncan, S. M., and Majetich, G. Application of Commercial Microwave Ovens to Organic Synthesis. Tetrahedron Lett. 1986, 27(41), 4945-4948.
  81. Zhao, Y., Hong, J-M., and Zhu, J-J. Microwave-assisted self-assembled ZnS nanoballs. J. Cryst. Growth 2004, 270, 438-445.
  82. Feng, X. Wang, Y., Muhammad, F., Sun, F., Tian, Y., and Zhu, G. Size, Shape, and Porosity Control of Medi-MOF-1 via Growth Modulation under Microwave Heating. Cryst. Growth Des. 2019, 19, 889-895.
  83. Chahal, S., Kauzlarich, S. M., and Kumar, P. Microwave Synthesis of Hematene and Other Two-Dimensional Oxides. ACS Mater. Lett. 2021, 3(5), 631-640.
  84. Ju, Z., Qi, X., Sfadia, R., Wang, M., Tseng, E., Panchul, E. C., Carter, S. A., and Kauzlarich, S. M. Single-Crystalline Germanium Nanocrystals via a Two-Step Microwave-Assisted Colloidal Synthesis from GeI4. ACS Mater. Au 2022, 2(3), 330-342.
  85. Birkel, A., Reuter, F., Koll, D., Frank, S., Branscheid, R., Panthöfer, M., Rentschler, E., and Tremel, W. The interplay of crystallization kinetics and morphology during the formation of SnO2 nanorods: snapshots of the crystallization from fast microwave reactions. CrystEngComm 2011, 13(7), 2487-2493.
  86. Birkel, A., Lee, Y-G., Koll, D., van Meerbeek, X., Frank, S., Choi, M. J., Kang, Y. S., Char, K., and Tremel, W. Highly efficient and stable dye-sensitized solar cells based on SnO2 nanocrystals prepared by microwave-assisted synthesis. Energ. Environ. Sci. 2012, 5, 5392-5400.
  87. Nair, G. B., Swart, H. C., and Dhoble, S. J. A review on the advancements in phosphor-converted light emitting diodes (pc-LEDs): Phosphor synthesis, device fabrication and characterization. Progr. Mater. Sci. 2020, 109, 100622.
  88. Zhang, Y., Xu, J., Cui, Q., and Yang, B. Eu3+-doped Bi4Si3O12 red phosphor for solid state lighting: microwave synthesis, characterization, photoluminescence properties and thermal quenching mechanisms. Sci. Rep. 2017, 7, 42464.
  89. Rabenau, A. The Role of Hydrothermal Synthesis in Preparative Chemistry. Angew. Chem. Int. Ed. 1985, 24(12), 1026-1040.
  90. Korzenski, M. B. and Kolis, J. W. Diels-Alder reactions using supercritical water as an aqueous solvent medium. Tetrahedron Lett. 1997, 38(32), 5611-5614.
  91. Feger, C. R. and Kolis, J. W. Synthesis and Characterization of Two New Copper Tellurites, Ba2Cu4Te4O11Cl4 and BaCu2Te2O6Cl2 in Supercritical H2O. Inorg. Chem. 1998, 37(16), 4046-4051.
  92. Cundy, C. S. and Cox, P. A. The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time. Chem. Rev. 2003, 103(3), 663-702.
  93. Feng, S. and Xu, R. New Materials in Hydrothermal Synthesis. Acc. Chem. Res. 2001, 34(3), 239-247.
  94. Walton, R. I. Subcritical solvothermal synthesis of condensed inorganic materials. Chem. Soc. Rev. 2002, 31(4), 230-238.
  95. Kayalvizhi, T., Sathya, A., and Meher, K. R. S. P. Hydrothermal Synthesis of Perovskite CsPbBr3: Spotlight on the Role of Stoichiometry in Phase Formation Mechanism. J. Electron. Mater. 2022, 51, 3466-3475.
  96. Demazeau, G., Goglio, G., and Largeteau, A. Solvothermal processes and the synthesis of nitrides. High Press. Res. 2008, 28(4), 497-502.
  97. Kundu, J., Khilari, S., and Pradhan, D. Shape-Dependent Photocatalytic Activity of Hydrothermally Synthesized Cadmium Sulfide Nanostructures. ACS Appl. Mater. Interfaces 2017, 9, 9669-9680.
  98. Song, X., Zhao, Y., and Zheng, Y. Hydrothermal synthesis of tungsten oxide nanobelts. Mater. Lett. 2006, 60, 3405-3408.
  99. Sun, M., Lan, B., Yu, L., Ye, F., Song, W., He, J., Diao, G., and Zheng, Y. Manganese oxides with different crystalline structures: Facile hydrothermal synthesis and catalytic activities. Mater. Lett. 2012, 86, 18-20.
  100. Hiley, C. I., Lees, M. R., Fisher, J. M., Thompsett, D., Agrestini, S., Smith, R. I., and Walton, R. I. Ruthenium(V) Oxides from Low-Temperature Hydrothermal Synthesis. Angew. Chem. 2014, 126, 4512-4516.
  101. Chirayil, T., Zavalij, P. Y., and Whittingham, M. S. Hydrothermal Synthesis of Vanadium Oxides. Chem. Mater. 1998, 10, 2629-2640.
  102. Gonçalves, R. F., Moura, A. P., Godinho, M. J., Longo, E., Machado, M. A. C., de Castro, D. A., Siu Li, M., and Marques, A. P. A. Crystal growth and photoluminescence of europium-doped strontium titanate prepared by a microwave hydrothermal method. Ceram. Int. 2015, 41, 3549-3554.
  103. Binnewies, M., Glaum, R., Schmidt, M., and Schmidt, P. Chemical Vapor Transport Reactions. De Gruyter, 2012.
  104. Schäfer, H. and Nickl, J. Über das Reaktionsgleichgewicht Si + SiCl4 = 2 SiCl2 und die thermochemischen Eigenschaften des gasförmigen Silicium(II)-chlorids. Z. Anorg. Allg. Chem. 1953, 274(4-5), 250-264.
  105. Van Arkel, A. E. and de Boer, J. H. Darstellung von reinem Titanium-, Zirkonium-, Hafnium- und Thoriummetall. Z. Anorg. Allg. Chem.1925, 148(1), 345-350.
  106. Wang, D., Luo, F., Lu, M., Xie, X., Huang, L., and Huang, W. Chemical Vapor Transport Reactions for Synthesizing Layered Materials and Their 2D Counterparts. Small 2019, 15, 1804404.
  107. May, A. F., Yan, J., and McGuire, M. A. A practical guide for crystal growth of van der Waals layered materials. J. Appl. Phys. 2020, 128, 051101.
  108. Mikami, M., Eto, T., Wang, J., Masa, Y., and Isshiki, M. Growth of zinc oxide by chemical vapor transport. J. Cryst. Growth 2005, 276, 389-392.
  109. Cheuvart, P., El-Hanani, U., Schneider, D., and Triboulet, R. CdTe and CdZnTe Crystal Growth by Horizontal Bridgman Technique. J. Cryst. Growth 1990, 101, 270-274.
  110. Petrosyan, A. G. Crystal growth of laser oxides in the vertical Bridgman configuration. J. Cryst. Growth 1994, 139, 372-392.
  111. Czochralski, J. Ein neues Verfahren zur Messung der Kristallisationsgeschwindigkeit der Metalle. Z. Phys. Chem. 1918, 92U(1), 219-221.
  112. Asadian, M., Hajiesmaeilbaigi, F., Mirzaei, N., Saeedi, H., Khodaei, Y., and Enayati, S. Composition and dissociation processes analysis in crystal growth of Nd: GGG by the Czochralski method. J. Cryst. Growth 2010, 312, 1645-1650.
  113. Chen, X., Chen, P., Jiang, L., Zhao, Y., Chen, Y., Sun, Z., and Chen, H. Luminescence properties of large-size Li2MoO4 single crystal grown by Czochralski method. J. Cryst. Growth 2021, 558, 126022.
  114. Utsu, T. and Akiyama, S. Growth and applications of Gd2SiO5: Ce scintillators. J. Cryst. Growth 1991, 109(1-4), 385-391.
  115. Yasui, N., Kobayashi, T., Ohashi, Y., and Den, T. Phase-separated CsI-NaCl scintillator grown by the Czochralski method. J. Cryst. Growth 2014, 399, 7-12.
  116. Nikl, M. and Yoshikawa, A. Recent R&D Trends in Inorganic Single-Crystal Scintillator Materials for Radiation Detection. Adv. Opt. Mater. 2015, 3(4), 463-481.
  117. Melcher, C. L. and Schweitzer, J. S. Cerium-doped lutetium oxyorthosilicate: a fast, efficient new scintillator. IEEE Trans. Nucl. Sci. 1992, 39(4), 502-505.
  118. Munir, Z. A., Anselmi-Tamburini, U., and Ohyanagi, M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 2006, 41, 763-777.
  119. Dudina, D. V., Bokhonov, B. B., and Olevsky, E. A. Fabrication of Porous Materials by Spark Plasma Sintering: A Review. Materials 2019, 12(3), 541.
  120. Inoue, K. Electric Discharge Sintering. U.S. Patent 3241956, 1966.
  121. Maulik, O., Kumar, D., Kumar, S., Fabijanic, D. M., and Kumar, V. Structural evolution of spark plasma sintered AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) high entropy alloys. Intermetallics 2016, 77, 46-56.
  122. Laurent-Brocq, M., Goujon, P.-A., Monnier, J., Villeroy, B., Perrière, L., Pirès, R., and Garcin, G. Microstructure and mechanical properties of a CoCrFeMnNi high entropy alloy processed by milling and spark plasma sintering. J. Alloys Comp. 2019, 780, 856-865.
  123. Grasso, S., Kim, E-Y., Saunders, T., Yu, M., Tudball, A., Choi, S-H., and Reece, M. Ultra-Rapid Crystal Growth of Textured SiC Using Flash Spark Plasma Sintering Route. Cryst. Growth Des. 2016, 16, 2137-2321.
  124. Milisavljevic, I., Zhang, G., and Wu, Y. Solid-state single-crystal growth of YAG and Nd: YAG by spark plasma sintering. J. Mater. Sci. Tech. 2022, 106, 118-127.
  125. Zhao, L-D., Zhang, B-P., Liu, W-S., Zhang, H-L., and Li, J-F. Enhanced thermoelectric properties of bismuth sulfide polycrystals prepared by mechanical alloying and spark plasma sintering. J. Solid State Chem. 2008, 181, 3278-3282.
  126. Johnson, K. D. and Lopes, D. A. Grain growth in uranium nitride prepared by spark plasma sintering. J. Nucl. Mater. 2018, 503, 75-80.
  127. Yang, K., Kardoulaki, E., Zhao, D., Broussard, A., Metzger, K., White, J. T., Sivack, M. R., Mcclellan, K. J., Lahoda, E. J., and Lian, J. Uranium nitride (UN) pellets with controllable microstructures and phase-fabrication by spark plasma sintering and their thermal-mechanical and oxidation properties. J. Nucl. Mater. 2021, 557, 153272.
  128. Stock, N. & Biswas, S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933-969 (2011).
  129. Rubio-Martinez, M. et al. New synthetic routes towards MOF production at scale. Chem. Soc. Rev. 46, 3453-3480 (2017).
  130. Zhou, H.-C., Long, J. R. & Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 112, 673-674 (2012).
  131. Krebs, B., Pohl, S., Schiwy, W. Hexathio-digermanates and-distannates: A New Type of Dimeric Tetrahedral Ion. Angew. Chem. Int. Ed. 9, 897- 898, (1970).
  132. Walton, R. I. Subcritical solvothermal synthesis of condensed inorganic materials. Chem. Soc. Rev. 31, 230- 238, (2002).
  133. Poltavets, V. V. et al. Bulk magnetic order in a two-dimensional Ni1+/Ni2+ (d9/d8) nickelate, isoelectronic with superconducting cuprates. Phys. Rev. Lett. 104, 206403 (2010).
  134. Blakely, C. K., Bruno, S. R., Poltavets, V. V. Low-temperature solvothermal approach to the synthesis of La4Ni3O8 by topotactic oxygen deintercalation. Inorg. Chem. 50, 6696- 6700, (2011).
  135. Takeda, Y., Kanamaru, F., Shimada, M., and Koizumi, M. The Crystal Structure of BaNiO3. Acta Crystallogr. 1976, B32, 2464.
  136. Therese, G. H. A., Dinamani, M., and Kamath, P. V. Electrochemical synthesis of perovskite oxides. J. Appl. Electrochem. 2005, 35, 459-465.
  137. Hall, C. M. Process of Reducing Aluminium from its Fluoride Salts by Electrolysis. US patent 400664, (1889).
  138. Héroult, P. French patent no. 175, 711 (1886).
  139. Geiser U., Schlueter J. A. Conducting organic radical cation salts with organic and organometallic anions. Chem. Rev. 104, 5203-5241 (2004).
  140. Piwonka, T. S. Casting Design and Quality Assurance, Metals Handbook Desk Edition, Second Edition, ASM International, 1998.
  141. Koohpayeh, S. M., Fort, D., Bradshaw, A., & Abell, J. S. Thermal characterization of an optical floating zone furnace: a direct link with controllable growth parameters. J. Cryst. Growth 2009, 311(8), 2513-2518.
  142. Device for single-crystal growth and method of single-crystal growth. Japanese Patent No. JP5181396B2.
  143. Ito, T., Ushiyama, T., Yanagisawa, Y., Kumai, R., and Tomioka, Y. Growth of Highly Insulating Bulk Single Crystals of Multiferroic BiFeO3 and Their Inherent Internal Strains in the Domain-Switching Process. Cryst. Growth Des. 2011, 11(11), 5139-5143.
  144. Poplawsky, R. P. Ferrite Crystals Using an arc image furnace. J. Appl. Phys. 1962, 33, 1616.
  145. Feigelson, R.S. (1985). Growth of fiber crystals. In Kaldis, E (ed.). Crystal Growth of Electronic Materials. p. 127.
  146. Feigelson, R. S., D. Gazit, D. K. Fork, and T. H. Geballe. Superconducting Bi-Ca-Sr-Cu-O fibers grown by the laser-heated pedestal growth method. Science 240, 4859, 1642-1645, 1988.
  147. Mlavsky, A. I. and Weinstein, M. Crystal Growth of GaAs from Ga by a Traveling Solvent Method. J. Appl. Phys. 1963, 34, 2885.
  148. Koohpayeh, S. M., Single crystal growth by the traveling solvent technique: A review. Prog. Cryst. Growth Char. Mater. 2016, 62(4), 22-34.
  149. Mason, D. R. and Cook, J. S. Zone leveling and crystal growth of peritectic compounds. J. Appl. Phys. 1961, 32(3), 475-477.
  150. Lyons, A., D. Schleich, A. Wold. Crystal growth and characterization of PdTe2. Mater. Res. Bull. 1976, 11(9), 1155-1159.
  151. Zhang, X., Xue, D., Xu, D., Feng, X., and Wang, J. Growth of large MgO single crystals by an arc-fusion method. J. Cryst. Growth 2005, 280, 234-238.
  152. Beals, M. D. Single-Crystal Titanates and Zirconates. Refractory Materials 1970, 5(2), 99-116.
  153. Zeidler, A. and Crichton, W. A. Materials under pressure. MRS Bull. 2017, 42(10), 710-713.
  154. Hossain, M. T. Effect of Pressure on the Properties of Solids. American International University-Bangladesh. 2009.
  155. Hoshikawa, K. Czochralski Silicon Crystal Growth in the Vertical Magnetic Field. Jpn. J. Appl. Phys. 1982, 21, L545.
  156. Abrosimov, N. V., Bazhenov, A. V., and Tatarchenko, V. A. Growth features and local electronic properties of shaped silicon. J. Cryst. Growth 1987, 82(1-2), 203-208.
  157. Vianna, W. D. S. and Bobrovnitchii, G. S. Optimization of the process of industrial diamond synthesis. 6th World Congress of structural and Multidisciplinary Optimization. Rio de Janeiro, 2005.
  158. Taniguchi, T. and Watanabe, K. Synthesis of high-purity boron nitride single crystals under high pressure by using Ba-BN solvent. J. Cryst. Growth 2007, 303, 525-529.
  159. Ohtaka, O., Takebe, H., Yoshiasa, A., Fukui, H., and Katayama, Y. Phase relations of AgI under high pressure and high temperature. Solid State Comm. 2002, 123(5), 213-216.
  160. Amrani, B., Ahmed, R., Hassan, F. E. H., and Reshak, A. H. Structural, electronic and optical properties of AgI under pressure. Phys. Lett. A, 372, 14, 2502-2508, 2008.
  161. Maggard, P.A. Capturing Metastable Oxide Semiconductors for Applications in Solar Energy Conversion. Acc. Chem. Res. 2021, 54, 3160-3171.
  162. Chamorro, J.R. and McQueen, T.M. Progress toward Solid State Synthesis by Design. Acc. Chem. Res. 2018, 51, 2918-2925.
  163. Dabkowska, H. A. and Dabkowski, A. B. Optical Floating Zone-Complementary Crystal Growth Technique for New Classes of Oxide Materials. Handbook of Crystal Growth 2nd Edition 2015, 281-312.
  164. Hermann, R., Priede, J., and Gerbeth, G. Floating-Zone Single Crystal Growth of Intermetallic Compounds Using a Two-phase RF Inductor. Handbook of Crystal Growth 2nd Edition 2015, 313-329.
  165. Nishida, K., Kitahama, K., and Kawai, S. Preparation of Li3N Single Crystal By Floating Zone Technique. J. Cryst. Growth 1983, 62, 475-480.
  166. Christensen, A. N. and Rusche, C. Crystal Growth of Niobium Nitride and Niobium Carbide Nitride. J. Cryst. Growth 1978, 44, 383-386.
  167. Sakaguchi, R., Nagao, M., Maruyama, Y., Watauchi, S., and Tanaka, I. Growth of Cr2N single crystals by the floating zone method. J. Cryst. Growth 2020, 546, 125782.
  168. Christensen, A. N. The Crystal Growth of The Transition Metal Compounds TiC, TiN, and ZrN by a Floating Zone Technique. J. Cryst. Growth 1976, 33, 99-104.
  169. Du, K-Z., Wang, X., Zhang, J., Liu, X., Kloc, C., and Xiong, Q. CdS bulk crystal growth by optical floating zone method: strong photoluminescence upconversion and minimum trapped state emission. Opt. Eng. 2017, 56(1), 011109.
  170. Yamane, H. and DiSalvo, F. J. Sodium flux synthesis of nitrides. Progr. Solid State Chem. 2018, 51, 27-40.
  171. Schleid, T. and Meyer, G. Eu4OCl6 and Eu4OBr6: Crystal Growth and Structure. Z. Anorg. Allg. Chem. 1987, 554, 118-122.
  172. Van Loef, E. V., Ciampi, G., Shirwadkar, U., Pandian, L. S., and Shah, K. S. Crystal growth and scintillation properties of Thallium-based halide scintillators. J. Cryst. Growth 2020, 532, 125438.
  173. Lenz, M. and Gruehn, R. Developments in Measuring and Calculating Chemical Vapor Transport Phenomena Demonstrated on Cr, Mo, W, and Their Compounds. Chem. Rev. 1997, 97, 2967-2994.
  174. Kosyakov, A. V., Zavrazhnov, A. Y., Naumov, A. V., Nazarova, A. A., and Zlomanov, V. P. Chemical Vapor Transport: A Viable Approach to Controlling the Composition of Intermetallic Phases Promising for Catalyst Engineering. Inorg. Mater. 2007, 43, 1199-1205.
  175. Vaddiraju, S., Mohite, A., Chin, A., Meyyappan, M., Sumanasekera, G., Alphenaar, B. W., and Sunkara, M. K. Mechanisms of 1D Crystal Growth in Reactive Vapor Transport: Indium Nitride Nanowires. Nano Lett. 2005, 5(8), 1625-1631.
  176. Tang, C. C., Fan, S. S., Li, P., Liu, Y. M., and Dang, H. Y. Synthesis of boron nitride in tubular form. Mater. Lett. 2001, 51, 315-319.
  177. Ohashi, M., Yamanaka, S., and Hattori, M. Chemical Vapor Transport of Layer Structured Crystal β-ZrNCl. J. Solid State Chem. 1988, 77, 342-347.
  178. Schurz, C. M., Shlyk, L., Schleid, T., and Niewa, R. Superconducting nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I). Z. Krist. - Cryst. Mater. 2011, 226, 395-416.
  179. Cheng, S. F., Nadgorny, B., Bussmann, K., Carpenter, E. E., Das, B. N., Trotter, G., Raphael, M. P., and Harris, V. G. Growth and Magnetic Properties of Single Crystal Co2MnX (X = Si, Ge) Heusler Alloys. IEEE Trans. Magn. 2001, 37(4), 2176-2178.
  180. Johnson, D. R., Inui, H., and Yamaguchi, M. Crystal growth of TiAl alloys. Intermetallics 1998, 6, 647-652.
  181. Tripathy, P. K., Arya, A., and Bose, D. K. Preparation of vanadium nitride and its subsequent metallization by thermal decomposition. J. Alloys Comp. 1994, 209, 175-180.
  182. Balasubramanian, C., Godbole, V. P., Rohatgi, V. K., Das, A. K., and Bhoraskar, S. V. Synthesis of nanowires and nanoparticles of cubic aluminium nitride. Nanotechnology 2004, 15, 370-373.
  183. Franzen, H. F. and Graham, J. Crystal structure of dihafnium sulfide*. Z. Krist. - Cryst. Mater. 1966, 123, 133-138.
  184. Hoshikawa, K., Ohba, E., Kobayashi, T., Yanagisawa, J., Miyagawa, C., and Nakamura, Y. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air. J. Cryst. Growth 2016, 447, 36-41.
  185. Schulz, D., Ganschow, S., Klimm, D., Neubert, M., Roßberg, M., Schmidbauer, M., and Fornari, R. Bridgman-grown zinc oxide single crystals. J. Cryst. Growth 2006, 296, 27-30.
  186. Nakamura, M., Nakamura, H., Shimamura, K., and Ohashi, N. Growth and characterization of a gallium monosulfide (GaS) single crystal using the Bridgman method. J. Cryst. Growth 2021, 573, 126303.
  187. Karunagaran, N. and Ramasamy, P. Synthesis, growth and physical properties of silver gallium sulfide single crystals. Mater. Sci. Semicond. Process. 2016, 41, 54-58.
  188. Ajiboye, T. O. and Onwudiwe, D. C. Bismuth sulfide based compounds: Properties, synthesis and applications. Results in Chemistry 2021, 3, 100151.
  189. Kucharczyk, M. and Zabludowska, K. Review of Methods for Preparation of Zinc and Cadmium Sulfide, Selenide and Telluride Single Crystals. NASA Technical Memorandum 1986. Translated from Przeglad metod otrzymywania monokrysztalow siarczkow selenkow i tellurkow cynku i kadmu", Zeszyty Naukowe politechniki Bialostockie j. (Ser) Matematy ka Fizyka, Chemia, Poland, 1976, No. 1, pp. 3-21.
  190. Lindsey, A. C., Wu, Y., Zhuravleva, M., Loyd, M., Koschan, M., and Melcher, C. L. Multi-ampoule Bridgman growth of halide scintillator crystals using the self-seeding method. J. Cryst. Growth 2017, 470, 20-26.
  191. Bourret-Courchesne, E. D., Bizarri, G. A., Borade, R., Gundiah, G., Samulon, E. C., Yan, Z., and Derenzo, S. E. Crystal growth and characterization of alkali-earth halide scintillators. J. Cryst. Growth 2012, 352, 78-83.
  192. Král, R. Study on influence of growth conditions on position and shape of crystal/melt interface of alkali lead halide crystals at Bridgman growth. J. Cryst. Growth 2012, 360, 162-166.
  193. Nassau, K. and Broyer, A. M. Application of Czochralski Crystal-Pulling Technique to High-Melting Oxides. J. Am. Ceram. Soc. 1962, 45, 474-478.
  194. Shimamura, K. and Víllora, E. G. Czochralski-based Growth and Characteristics of Selected Novel Single Crystals for Optical Applications. Acta Phys. Pol. A 2013, 124(2), 265-273.
  195. Zakgeim, D. A., Panov, D. I., Spiridonov, V. A., Kremleva, A. V., Smirnov, A. M., Bauman, D. A., Romanov, A. E., Odnoblyudov, M. A., and Bougrov, V. E. Volume Gallium Oxide Crystals Grown from Melt by the Czochralski Method in an Oxygen-Containing Atmosphere. Tech. Phys. Lett. 2020, 46(11), 1144-1146.
  196. Chou, M. M. C., Tsao, P. C., and Huang, H. C. Study on Czochralski growth and defects of LiAlO2 single crystals. J. Cryst. Growth 2006, 292, 542-545.
  197. Chou, M. M. C., Chen., C., Yang, S. S., Huang, C. H., and Huang, H. L. Czochralski growth and defect study of (La,Sr)(Al,Ta)O3 single crystals. J. Phys. Chem. Solid. 2008, 69, 425-429.
  198. Cockayne, B., Steward, V. W., Brown, G. T., MacEwan, W. R., and Young, M. L. The Czochralski Growth of Gallium Antimonide Single Crystals Under Reducing Conditions. J. Cryst. Growth 1982, 58, 267-272.
  199. Bressel, B., Chevalier, B., Etourneau, J., and Hagenmuller, P. Czochralski Crystal Growth of Rare Earth Tetraborides. J. Cryst. Growth 1979, 47, 429-433.
  200. Rabenau, A. Lithium Nitride and Related Materials Case Study of the Use of Modern Solid State Research Techniques. Solid State Ionics 1982, 6, 277-293.
  201. Walker, P. J. Melt Growth of Rare-Earth Binary and Complex Halides. Progr. Cryst. Growth Char. Mater. 1980, 3(2-3), 103-119.
  202. Lal, K., Murthy, R. V. A., Halder, S. K., Singh, B. P., and Kumar, V. Growth of Nearly Perfect Alkali Halide Single Crystals by Czochralski Method and Their Characterisation. J. Cryst. Growth 1982, 56, 125-131.
  203. Edison, E., Satish, R., Ling, W. C., Bucher, N., Aravindan, V., and Madhavi, S. Nanostructured intermetallic FeSn2-carbonaceous composites as highly stable anode for Na-ion batteries. J. Power Sourc. 2017, 343, 296-302.
  204. Xu, J., Lian, Z., Wei, B., Li, Y., Bondarchuk, O., Zhang, N., Yu, Z., Araujo, A., Amorim, I., Wang, Z., Li, B., and Liu, L. Strong Electronic Coupling between Ultrafine Iridium-Ruthenium Nanoclusters and Conductive, Acid-Stable Tellurium Nanoparticle Support for Efficient and Durable Oxygen Evolution in Acidic and Neutral Media. ACS Catalysis 2020, 10, 3571-3579.
  205. Jana, R., Subbarao, U., and Peter, S. C. Ultrafast synthesis of flower-like ordered Pd3Pb nanocrystals with superior electrocatalytic activities towards oxidation of formic acid and ethanol. J. Power. Sourc. 2016, 301, 160-169.
  206. Xu, R., Huang, L., Zhang, J., Li, D., Liu, J., Liu, J., Fang, J., Wang, M., and Tang, G. Nanostructured SnSe integrated with Se quantum dots with ultrahigh power factor and thermoelectric performance from magnetic field-assisted hydrothermal synthesis. J. Mater. Chem. A 2019, 7, 15757-15765.
  207. Huang, T., Mao, S., Zhou, G., Wen, Z., Huang, X., Ci, S., and Chen, J. Hydrothermal synthesis of vanadium nitride and modulation of its catalytic performance for oxygen reduction reaction. Nanoscale 2014, 6, 9608-9613.
  208. Meiyan, Y., Dong, S., Li, K., Hao, X., Lai, Z., Wang, Q., Cui, D., and Jiang, M. Synthesis of BN nanocrystals under hydrothermal conditions. J. Cryst. Growth 2004, 270, 85-91.
  209. Bolagam, R. and Um, S. Hydrothermal Synthesis of Cobalt Ruthenium Sulfides as Promising Pseudocapacitor Electrode Materials. Coatings 2020, 10, 200-215.
  210. Liu, X. Hydrothermal synthesis and characterization of nickel and cobalt sulfides nanocrystallines. Mater. Sci. Eng. B 2005, 119, 19-24.
  211. Chen, Y., Molokeev, M. S., Atuchin, V. V., Reshak, A. H., Auluck, S., Alahmed, Z. A., and Xia, Z. Synthesis, Crystal Structure, and Optical Gap of Two-Dimensional Halide Solid Solutions CsPb2(Cl1-xBrx)5. Inorg. Chem. 2018, 57, 9531-9537.
  212. Wu, Q., Liu, H., Kang, L., Lin, Z., Meng, X., Chen, X., and Qin, J. Rb2SeOCl4*H2O: a polar material among the alkali metal selenite halides with a strong SHG response. Dalton Trans. 2016, 45, 17723-17728.
  213. Walton, R. I. Perovskite Oxides Prepared by Hydrothermal and Solvothermal Synthesis: A Review of Crystallisation, Chemistry, and Compositions. Chem. Eur. J. 2020, 26(42), 9041-9069.
  214. Lai., J., Niu, W., Luque, R., and Xu, G. Solvothermal synthesis of metal nanocrystals and their applications. Nano Today 2015, 10(2), 240-267.
  215. Jana, R. and Peter, S. C. One-pot solvothermal synthesis of ordered intermetallic Pt2In3 as stable and efficient electrocatalyst towards direct alcohol fuel cell application. J. Solid State Chem. 2016, 242(2), 133-139.
  216. Mazumder, B., Chirico, P., and Hector, A. L. Direct Solvothermal Synthesis of Early Transition Metal Nitrides. Inorg. Chem. 2008, 47(20), 9684-9690.
  217. Choi, J. and Gillan, E. G. Solvothermal Synthesis of Nanocrystalline Copper Nitride from an Energetically Unstable Copper Azide Precursor. Inorg. Chem. 2005, 44(21), 7385-7393.
  218. Yu, S., Yang, J., Han, Z., Zhou, Y., Yang, R., Qian, Y., and Zhang, Y. Controllable synthesis of nanocrystalline CdS with different morphologies and particle sizes by a novel solvothermal process. J. Mater. Chem. 1999, 9, 1283-1287.
  219. Hu, J. Q., Deng, B., Zhang, W. X., Tang, K. B., and Qian, Y. T. Synthesis and characterization of CdIn2S4 nanorods by converting CdS nanorods via the hydrothermal route. Inorg. Chem. 2001, 40(13), 3130-3133.
  220. Chen, M., Zou, Y., Wu, L., Pan, Q., Yang, D., Hu, H., Tan, Y., Zhong, Q., Xu, Y., Liu, H., Sun, B., and Zhang, Q. Solvothermal Synthesis of High-Quality All-Inorganic Cesium Lead Halide Perovskite Nanocrystals: From Nanocube to Ultrathin Nanowire. Adv. Funct. Mater. 2017, 27(23), 1701121.
  221. Chen, L-J., Lee, C-R., Chuang, Y-J., Wu, Z-H., and Chen, C. Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Quantum Rods with High-Performance Solar Cell Application. J. Phys. Chem. Lett. 2016, 7(24), 5028-5035.
  222. Abulikemu, M., Neophytou, M., Barbé, J. M., Tietze, M. L., El Labban, A., Anjum, D. H., Amassian, A., McCulloch, I., and Del Gobbo, S. Microwave-synthesized tin oxide nanocrystals for low-temperature solution-processed planar junction organo-halide perovskite solar cells. J. Mater. Chem. A 2017, 5, 7759-7763.
  223. Meher, S. K., Justin, P., and Rao, G. R. Microwave-Mediated Synthesis for Improved Morphology and Pseudocapacitance Performance of Nickel Oxide. ACS Appl. Mater. Interfaces 2011, 3 ,2063-2073.
  224. Fan, Z., Cappelluti, M. D., and Gregory, D. H. Ultrafast, Energy-Efficient Synthesis of Intermetallics; Microwave-Induced Metal Plasma (MIMP) Synthesis of Mg2Sn. ACS Sustainable Chem. Eng. 2019, 7, 19686-19698.
  225. Lekse, J. W., Stagger, T. J., and Aitken, J. A. Microwave Metallurgy: Synthesis of Intermetallic Compounds via Microwave Irradiation. Chem. Mater. 2007, 19, 3601-3603.
  226. Ramesh, P. D. and Rao, K. J. Microwave-Assisted Synthesis of Aluminum Nitride. Adv. Mater. 1995, 7(2), 177-179.
  227. Houmes, J. D. and zur Loye, H-C. Microwave Synthesis of Ternary Nitride Materials. J. Solid State Chem. 1997, 130, 266-271.
  228. Vaidhyanathan, B., Agrawal, D. K., and Roy, R. Novel synthesis of nitride powders by microwave-assisted combustion. J. Mater. Res. 2000, 15(4), 974-981.
  229. Jiang, Y. and Zhu, Y-J. Microwave-Assisted Synthesis of Sulfide M2S3 (M = Bi, Sb) Nanorods Using an Ionic Liquid. J. Phys. Chem. B 2005, 109, 4361-4364.
  230. Wang, Y., Chen, X., and Chen, C. Microwave synthesis of Zn, Cd binary metal sulfides with superior photocatalytic H2 evolution performance. Inorg. Chem. Comm. 2021, 134, 108993.
  231. Chen, D., Tang, K., Shen, G., Sheng, J., Fang, Z., Liu, X., Zheng, H., and Qian, Y. Microwave-assisted synthesis of metal sulfides in ethylene glycol. Mater. Chem. Phys. 2003, 82, 206-209.
  232. Liu, H., Wu, Z., Gao, H., Shao, J., Zou, H., Yao, D., Liu, Y., Zhang, H., and Yang, B. One-Step Preparation of Cesium Lead Halide CsPbX3 (X = Cl, Br, and I) Perovskite Nanocrystals by Microwave Irradiation. ACS Appl. Mater. Interfaces 2017, 9, 42919-42927.
  233. Li, G., Qin, F., Wang, R., Xiao, S., Sun, H., and Chen, R. BiOX (X = Cl, Br, I) nanostructures: Mannitol-mediated microwave synthesis, visible light photocatalytic performance, and Cr(VI) removal capacity. J. Colloid Interface Sci. 2013, 409, 43-51.
  234. Stennett, M. C., Pinnock, I. J., and Hyatt, N. C. Rapid microwave synthesis of Pb5(VO4)3X (X = F, Cl, Br and I) vanadinite apatites for the immobilization of halide radioisotopes. Mater. Res. Soc. Online Proceedings Library 2012, 1475, 221-226.
  235. Sharma, S., Bayikadi, R., and Swaminathan, P. Spark plasma sintering route to synthesize aluminium doped zinc oxide. RSC Adv. 2016, 6, 86586-86596.
  236. Kaiser, F., Schmidt, M., Grin, Y., and Veremchuk, I. Molybdenum Oxides MoOx: Spark-Plasma Synthesis and Thermoelectric Properties at Elevated Temperature. Chem. Mater. 2020, 32, 2025-2035.
  237. Sairam, K., Sonber, J. K., Murthy, T. S. R. C., Subramanian, C., Fotedar, R. K., and Hubli, R. C. Reaction spark plasma sintering of niobium diboride. Int. J. Refr. Metals Hard Mater. 2014, 43, 259-262.
  238. Moshtaghioun, B. M., Gómez-García, D., and Domínguez-Rodríguez, A. Spark plasma sintering of titanium nitride in nitrogen: Does it affect the sinterability and the mechanical properties? J. Eur. Ceram. Soc. 2018, 38, 1190-1196.
  239. Belmonte, M., González-Julián, J., Miranzo, P., and Osendi, M. I. Spark plasma sintering: A powerful tool to develop new silicon nitride-based materials. J. Eur. Ceram. Soc. 2010, 30, 2937-2946.
  240. Tang, Y-Q., Ge, Z-H., and Feng, J. Synthesis and Thermoelectric Properties of Copper Sulfides via Solution Phase Methods and Spark Plasma Sintering. Crystals 2017, 7, 141-150.
  241. Simon, J., Guélou, G., Srinivasan, B., Berthebaud, D., Mori, T., and Maignan, A. Exploring the thermoelectric behavior of spark plasma sintered Fe7-xCoxS8 compounds. J. Alloys Comp. 2020, 819, 152999.
  242. Zhang, L-J., Zhang, B-P., Ge, Z-H., Han, C-G., Chen, N., and Li, J-F. Synthesis and transport properties of AgBi3S5 ternary sulfide compound. Intermetallics 2013, 36, 96-101.
  243. Kimura, H., Nakamura, F., Kato, T., Nakauchi, D., Okada, G., Kawaguchi, N., and Yanagida, T. Optical and scintillation properties of Tl-doped CsBr transparent ceramics produced by spark plasma sintering. J. Mater. Sci. Mater. Electron. 2018, 29, 8498-8503.
  244. Kimura, H., Kato, T., Nakauchi, D., Kawaguchi, N., and Yanagida, T. Effect of Tl doping on optical, TSL, and OSL properties of Tl-doped RbBr transparent ceramics synthesized by SPS. Nuclear Instruments and Methods in Physics Research Station B: Beam Interactions with Materials and Atoms 2020, 478, 137-141.