Dataset: Atomic-scale mapping and quantification of local Ruddlesden-Popper phase variations

Dataset doi link: https://doi.org/10.34863/amcp-4s12

Paper doi:
1: https://doi.org/10.1021/acs.nanolett.2c03893

Authors: Erin E. Fleck1 Matthew R. Barone2 Hari P. Nair2 Nathaniel J. Schreiber2 Natalie M. Dawley2 Darrell G. Schlom2,3,4 Berit H. Goodge1 Lena F. Kourkoutis1,3
Author affiliations:
1: Department of Applied Engineering Physics - Cornell University
2: Department of Materials Science and Engineering - Cornell University
3: Kavli Institute at Cornell for Nanoscale Science
4: Leibniz-Institut für Kristallzüchtung

Example Python notebooks for basic implementation of the phase-lock-in method described in Goodge, et al. "Disentangling Coexisting Structural Order Through Phase Lock-In Analysis of Atomic-Resolution STEM Data”, Microscopy and Microanalysis (2022) [ https://doi.org/10.1017/S1431927622000125] and the image-based structural analysis described in Fleck, et al. “Atomic-Scale Mapping and Quantification of Local RuddlesdenPopper Phase Variations”, Nano Letters (2022) [https://doi.org/10.1021/acs.nanolett.2c03893], as well as raw HAADF-STEM images and complete notebooks used to produce the figures in Fleck, et al. with all relevant parameters (e.g., Fourier mask size, strain threshold, horizontal sampling).

Code
ItemTypeFile
Python Cachezipped folder__pycache__.zip
Phase-Strain BasicipynbPhase-Strain_Basic.ipynb
corrCROP_31-rot_2.55Mx_50x0.25us_2048px_160mmCL_70umC2_0.5nA_mono30_spot9_1tifcorrCROP_31-rot_2.55Mx_50x0.25us_2048px_160mmCL_70umC2_0.5nA_mono30_spot9_1.tif
Click plotpyclickplot.py
WalkthroughipynbRP_Walkthrough.ipynb
RP BasicipynbRP_Basic.ipynb
RP AnalysisipynbRP_Analysis.ipynb
corrCROP_07_3.6Mx_50x0.5us_1024px_0.9nAscreenI_50umC2_1tifcorrCROP_07_3.6Mx_50x0.5us_1024px_0.9nAscreenI_50umC2_1.tif
corrCROP_07_3.6Mx_50x0.5us_1024px_0.9nAscreenI_50umC2_1pyVizPLDs.py
Utilspyutils.py
Pldpypld.py
27_SRO_5-1Mx_12us_1024pxtif27_SRO_5-1Mx_12us_1024px.tif
Figure 1
ItemTypeFile
06_3.6Mx_1x1us_4096px_50umC2_CL130mm_600pAscreen_1tif06_3.6Mx_1x1us_4096px_50umC2_CL130mm_600pAscreen_1.tif
RP_Fig1ipynbRP_Fig1.ipynb
Figure 2
ItemTypeFile
08_2.55Mx_1x1us_4096px_50umC2_CL130mm_600pAscreen_1tif08_2.55Mx_1x1us_4096px_50umC2_CL130mm_600pAscreen_1.tif
RP_Fig2ipynbRP_Fig2.ipynb
Figure 3
ItemTypeFile
Fig3_raw-strainpngFig3_raw-strain.png
Fig3a_corrCROP_29-rot_2.55Mx_50x0.25us_2048px_160mmCL_70umC2_0.5nA_mono30_spot9_1tifFig3a_corrCROP_29-rot_2.55Mx_50x0.25us_2048px_160mmCL_70umC2_0.5nA_mono30_spot9_1.tif
RP_Fig3aipynbRP_Fig3a.ipynb
Fig3b_corrCROP_29-rot_2.55Mx_50x0.25us_2048px_160mmCL_70umC2_0.5nA_mono30_spot9_1tifFig3b_corrCROP_29-rot_2.55Mx_50x0.25us_2048px_160mmCL_70umC2_0.5nA_mono30_spot9_1.tif
RP_Fig3bipynbRP_Fig3b.ipynb
Figure 4
ItemTypeFile
Fig4_raw-strainpngFig4_raw-strain.png
Figure 4a
ItemTypeFile
42_SRO_3-6Mx_12us_1024pxtif42_SRO_3-6Mx_12us_1024px.tif
RP_Fig4aipynbRP_Fig4a.ipynb
Figure 4b
ItemTypeFile
Python Cachezipped folder__pycache__.zip
Python Cachezipped folderRP_Fib4b.ipynb.zip
Click plotpyclickplot.py
vizPLDspyvizPLDs.py
Utilspyutils.py
Pldpypld.py
42_SRO_3-6Mx_12us_1024pxtif42_SRO_3-6Mx_12us_1024px.tif
Figure 5
ItemTypeFile
42_SRO_3-6Mx_12us_1024pxipynbRP_Fib5.ipynb
Fig5 Raw StrainpngFig5_raw-strain.png
42_SRO_3-6Mx_12us_1024pxtif42_SRO_3-6Mx_12us_1024px.tif