Dataset: Ferroelectric Modulation of Surface Electronic States in BaTiO3 for Enhanced Hydrogen Evolution Activity

https://doi.org/10.34863/80nw-gm95
Pedram Abbasi1, Matthew R. Barone2, Ma. de la Paz Cruz-Jáuregu3, Duilio Valdespino-Padilla3,4, Hanjong Paik5, Taewoo Kim1, Lior Kornblum6, Darrell G. Schlom2,7,8, Tod A. Pascal1,and David P. Fenning1

1 Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
2Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, United States
3Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), Carretera Tijuana-Ensenada Ensenada B.C. 22800, Mexico
4Universidad Autónoma de Baja California (UABC), Carretera Tijuana-Ensenada Ensenada B.C. 22800, Mexico
5Platform for the Accelerated Realization,Analysis & Discovery of Interface Materials (PARADIM),Cornell University, Ithaca, New York 14853, United States
6Andrew & Erna Viterbi Department of Electrical Engineering, Technion - Israel Institute of Technology, Haifa 32000-03, Israel
7Kavli Institute at Cornell for NanoscaleScience, Ithaca, New York 14853, United States
8Leibniz-Institut für Kristallzüchtung, 12489 Berlin, Germany

Ferroelectric nanomaterials offer the promise of switchable electronic properties at the surface, with implications for photo- and electrocatalysis. Studies to date on the effect of ferroelectric surfaces in electrocatalysis have been primarily limited to nanoparticle systems where complex interfaces arise. Here, we use MBE-grown epitaxial BaTiO3 thin films with atomically sharp interfaces as model surfaces to demonstrate the effect of ferroelectric polarization on the electronic structure, intermediate binding energy, and electrochemical activity toward the hydrogen evolution reaction (HER). Surface spectroscopy and ab initio DFT+U calculations of the well-defined (001) surfaces indicate that an upward polarized surface reduces the work function relative to downward polarization and leads to a smaller HER barrier, in agreement with the higher activity observed experimentally. Employing ferroelectric polarization to create multiple adsorbate interactions over a single electrocatalytic surface, as demonstrated in this work, may offer new opportunities for nanoscale catalysis design beyond traditional descriptors.

MBE Growth Profiles
ItemTypeFile
Growth 1zipped folderPDC_MBE308GM2_20190511_1_000000-AutoExport.zip
Growth 2zipped folderPDC_MBE308GM2_20190511_2_000000-AutoExport.zip
Growth 3zipped folderPDC_MBE308GM2_20190511_3_000000-AutoExport.zip
Growth 4zipped folderPDC_MBE308GM2_20190511_4_000000-AutoExport.zip
Growth 5zipped folderPDC_MBE308GM2_20190511_5_000000-AutoExport.zip
Growth 6zipped folderPDC_MBE308GM2_20190511_6_000000-AutoExport.zip
Growth 7zipped folderPDC_MBE308GM2_20190511_7_000000-AutoExport.zip
XRD Data
ItemTypeFile
10nm BTO on STO 001 002 peak TAcsv10nm BTO on STO 001 002 peak TA.csv
15nm BTO on STO 001 001 Rocking TAcsv15nm BTO on STO 001 001 Rocking TA.csv
15nm BTO on STO 001 113 RSMcsv15nm BTO on STO 001 113 RSM.csv
15nm BTO on STO 001 002 TAcsv15nm BTO on STO 001 002 TA.csv
10nm BTO on STO 001 113 RSM_Ccsv10nm BTO on STO 001 113 RSM_C.csv
10nm BTO on STO 001csv10nm BTO on STO 001.csv
20nm BTO on Nb-STO 001 002 peak th2th TAcsv20nm BTO on Nb-STO 001 002 peak th2th TA.csv
15nm BTO on STO 001 103 RSMcsv15nm BTO on STO 001 103 RSM.csv
15nm BTO on STO 001 002 Rocking TAcsv15nm BTO on STO 001 002 Rocking TA.csv
20nm BTO on Nb-STO 001 001 peak th2th TAcsv20nm BTO on Nb-STO 001 001 peak th2th TA.csv
15nm BTO on STO 001 001 TAcsv15nm BTO on STO 001 001 TA.csv
10nm BTO on STO 001 103 RSM_Ccsv10nm BTO on STO 001 103 RSM_C.csv
10nm BTO on STO 001 001 peak TAcsv10nm BTO on STO 001 001 peak TA.csv
namesrtfnames.rtf