Dataset: Canonical approach to cation flux calibration in oxide molecular-beam epitaxy

https://doi.org/ 10.34863/802t-xs70
Jiaxin Sun ,1 Christopher T. Parzyck ,2 June H. Lee,1 Charles M. Brooks,1 Lena F. Kourkoutis,3,7 Xianglin Ke,4 Rajiv Misra,4 Jürgen Schubert,5 Felix V. Hensling,1 Matthew R. Barone ,1 Zhe Wang,1 Megan E. Holtz,1,3 Nathaniel J. Schreiber,1 Qi Song,1 Hanjong Paik,1,6 Tassilo Heeg ,1 David A. Muller ,3,7 Kyle M. Shen,2,7 and Darrell G. Schlom1,7,8

1Department of Materials Sciences and Engineering, Cornell University, Ithaca, New York 14853, USA
2Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA
3School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14854, USA
4Department of Physics and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, USA
5Peter Grünberg Institute (PGI-9) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich GmbH,

Molecular-beam epitaxy (MBE) is the gold standard for the epitaxial growth of complex oxides with the best material properties as determined by respective figures of merit. Unfortunately, once more than one cation is involved in the material desired, MBE growth often becomes plagued by difficulties in stoichiometry control. Instead of relying on a quartz crystal microbalance to measure the fluxes of the individual molecular beams, which lacks accuracy, or reflection high-energy electron diffraction oscillations of the targeted multication oxide in layer-by-layer growth, which lacks general applicability, here, we describe a canonical approach based on the growth of films of the constituent binary oxides or metals individually for cation flux calibration. This method can calibrate the flux of each molecular beam with an absolute accuracy of  1%. After describing the growth parameters of binary oxides or metals enabling the individual fluxes of 39 elements of the periodic table to be determined, we demonstrate the efficacy of this approach by applying it to the growth of the quaternary ferromagnetic metal La0.5Sr0.5CoO3−δ to achieve films with transport properties rivaling the best reported using thin-film growth techniques providing stoichiometric transfer.

RHEED
ItemTypeFile
Al2O3 1-102 homozipped folderAl2O3 1-102 homo.zip
beta Ga2O3 Al2O3 001zipped folderbeta Ga2O3 Al2O3 001.zip
beta Ga2O3 Al2O3 001zipped folderCaO (100):MgO (100).zip
beta Ga2O3 Al2O3 001zipped folderCeO2 (111):YSZ (111).zip
Co3O4 (100) MgAl2O4 (100)zipped folderCo3O4 (100) MgAl2O4 (100).zip
Cr2O3 c-Al2O3zipped folderCr2O3 c-Al2O3.zip
Cr2O3 r-Al2O3zipped folderCr2O3 r-Al2O3.zip
Dy2O3 YSZ 111zipped folderDy2O3 YSZ 111.zip
Fe2O3 csaplowzipped folderFe2O3 csaplow.zip
Fe3O4 (100)- MgO (100)zipped folderFe3O4 (100)- MgO (100).zip
In2O3 Al2O3 001zipped folderIn2O3 Al2O3 001.zip
IrO2 (110)-TiO2 (110)zipped folderIrO2 (110)-TiO2 (110).zip
La2O3 111 YSZzipped folderLa2O3 111 YSZ.zip
Lu2O3 (111)-YSZ (111)zipped folderLu2O3 (111)-YSZ (111).zip
MgO Fe3O4 MgO 100zipped folderMgO Fe3O4 MgO 100.zip
Mn3O4 (001)-MgAl2O4 (100)zipped folderMn3O4 (001)-MgAl2O4 (100).zip
Mn3O4 (001)-MgAl2O4 (100)zipped folderNbO2 (110):MgF2 (110).zip
Nd2O3 YSZ 111zipped folderNd2O3 YSZ 111.zip
NiO MgO 100zipped folderNiO MgO 100.zip
NiO MgO 100zipped folderPd (111):YSZ (111).zip
Pt Al2O3 0001zipped folderPt Al2O3 0001.zip
Rh2O3 csaplowzipped folderRh2O3 csaplow.zip
Sc2O3 YSZ 111zipped folderSc2O3 YSZ 111.zip
Sm2O3 YSZ 111zipped folderSm2O3 YSZ 111.zip
SrO (100)-YSZ (100)zipped folderSrO (100)-YSZ (100).zip
TiO2 (110)-TiO2 (110)zipped folderTiO2 (110)-TiO2 (110).zip
VO2 TiO2 110zipped folderVO2 TiO2 110.zip
Y_Ba_Pr_Cuzipped folderY_Ba_Pr_Cu.zip
XRD
ItemTypeFile
beta Ga2O3 Al2O3 001zipped folderbeta Ga2O3 Al2O3 001.zip
beta Ga2O3 Al2O3 001zipped folderCaO (100):MgO (100).zip
beta Ga2O3 Al2O3 001zipped folderCeO2 (111):YSZ (111).zip
Co3O4 (100) MgAl2O4 (100)zipped folderCo3O4 (100) MgAl2O4 (100).zip
Cr2O3 c-Al2O3zipped folderCr2O3 c-Al2O3.zip
Cr2O3 r-Al2O3zipped folderCr2O3 r-Al2O3.zip
Dy2O3 YSZ 111zipped folderDy2O3 YSZ 111.zip
Fe2O3 csaplowzipped folderFe2O3 csaplow.zip
Fe3O4 (100)- MgO (100)zipped folderFe3O4 (100)- MgO (100).zip
In2O3 Al2O3 001zipped folderIn2O3 Al2O3 001.zip
IrO2 (110)-TiO2 (110)zipped folderIrO2 (110)-TiO2 (110).zip
La2O3 111 YSZzipped folderLa2O3 111 YSZ.zip
Lu2O3 (111)-YSZ (111)zipped folderLu2O3 (111)-YSZ (111).zip
MgO Fe3O4 MgO 100zipped folderMgO Fe3O4 MgO 100.zip
Mn3O4 (001)-MgAl2O4 (100)zipped folderMn3O4 (001)-MgAl2O4 (100).zip
Mn3O4 (001)-MgAl2O4 (100)zipped folderNbO2 (110):MgF2 (110).zip
Nd2O3 YSZ 111zipped folderNd2O3 YSZ 111.zip
Nd2O3 YSZ 111zipped folderPd (111):YSZ (111).zip
Pt Al2O3 0001zipped folderPt Al2O3 0001.zip
Rh2O3 csaplowzipped folderRh2O3 csaplow.zip
Sc2O3 YSZ 111zipped folderSc2O3 YSZ 111.zip
Sm2O3 YSZ 111zipped folderSm2O3 YSZ 111.zip
SnO2 TiO2 (110)zipped folderSnO2 TiO2 (110).zip
SrO (100)-YSZ (100)zipped folderSrO (100)-YSZ (100).zip
VO2 TiO2 110zipped folderVO2 TiO2 110.zip
Y_Ba_Pr_Cuzipped folderY_Ba_Pr_Cu.zip