Dataset: Optimization of PbTiO3 Single Crystals with Flux and Laser Floating Zone Method

https://doi.org/10.34863/6x7g-3a87
Lucas A. Pressley1,2, Mekhola Sinha1,2, Hector K. Vivanco1,2, Juan Chamorro1,2,*, Sujit Das3,**,Ramamoorthy Ramesh3,4, and Tyrel M. McQueen1,2,5
1Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
2Institute for Quantum Matter, The William H. Miller III Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218, United States
3Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
4Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
5Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States
*Present Address: Materials Department and California Nanosystems Institute, University of California Santa Barbara, Santa Barbara, California 93106, United States
**Present Address: Material Research Centre, Indian Institute of Science, Bangalore, 560012, India

PbTiO3 is an established high temperature ferroelectric and component of multiferroic devices. Single crystal growth of clean PbTiO3 has largely been limited to flux growth, in part due to the volatility of PbTiO3 near the melting point. We demonstrate the ability to grow single crystals of PbTiO3 using the laser diode floating zone technique. Crystal quality is examined using Laue, powder, and single crystal X-ray diffraction. Low temperature specific heat and annealing experiments using thermogravimetric analysis/differential thermal analysis were used to compare the disorder and vacancies generated in the laser diode floating zone with those produced by flux growth. Samples grown using the floating zone method showed minimal oxygen deficiency, while samples grown via flux had a higher density of vacancies and metal impurities (determined using glow discharge mass spectrometry), resulting in room temperature ferromagnetic behavior. The use of laser diodes as a heating source in the optical floating zone technique is essential in the stability of the zone growth and could be applied for production and zone refinement of other volatile materials.

FZ Footage
ItemTypeFile
Floating zone growth 1zipped folder2020-09-15.zip
Floating zone growth 2zipped folder2020-09-22.zip
Floating zone growth 3zipped folder2020-10-01.zip
Floating zone growth 4zipped folder2020-11-13.zip
Floating zone growth 5zipped folder2020-12-02.zip
Laue
ItemTypeFile
PbTiO3 undoped floating zone crystalszipped folderLTO-FZ-Laue.zip
PbTiO3 Er-doped floating zone crystalszipped folderLTO-Er-FZ-Laue.zip
MPMS
ItemTypeFile
PbTiO3 flux crystalzipped folderLTO-flux-MvH.zip
PbTiO3 Er doped FZ crystalzipped folderLTO-Er-FZ-MvH.zip
PbTiO3 undoped FZ crystaldatML_MPMS_20220603_1_LAP-LTO-FZ-29pt9mg-undoped.dat [Analyze]
PPMS
ItemTypeFile
PbTiO3 Cp powder as purchasedrawML_PPMS_20210809_1_LAP-PbTiO3-purchasedpowder.raw
PbTiO3 Cp FZ crystalrawPDC_LDFZ_20201001_1_217_(PBF1_20200925_LDFZ_20200922)-PbTiO3-FZxtal-Cp-3pt1mg-redo-more-data-points.raw
PbTiO3 Cp Flux crystalrawML_PTF1_20200919_1_LAP-PbTiO3-flux-xtal-Cp-2pt1mg-redo-more-data-points.raw
PbTiO3 Cp Flux crystal low temprawML_PPMS_20211012_1_LAP_(PPMS_20210325)-HC-2-20K-0T-PbTiO3-slowflux-2pt1mg.raw
PbTiO3 Cp FZ crystal low temprawML_PPMS_20211016_1_LAP_(PPMS_20210412_LDFZ_20201001)-PbTiO3-FZ-HC-2-20K-3pt1-mg.raw
PXRD
ItemTypeFile
PbTiO3 tip of grown crystal growth #4rawPDC_LDFZ_20201113_1_217_1_(PBF1_20201110)-4hr-PbTiO3-tipofgrowncrystal.raw
PbTiO3 second cut of grown crystal growth #4rawPDC_LDFZ_20201113_1_217_2_(PBF1_20201110)-4hr-PbTiO3-second-cut-of-grown-crystal.raw
PbTiO3 cut of crystal near beginning of growth #4rawPDC_LDFZ_20201113_1_217_3_(PBF1_20201110)-4hr-PbTiO3-cut-of-crystal-near-beginnning-of-growth.raw
PbTiO3 tip of feed rod for growth #4rawPDC_LDFZ_20201113_1_217_4_(PBF1_20201110)-4hr-PbTiO3-tip-of-feed-rod.raw
PbTiO3 tip of grown crystal growth #5rawPDC_LDFZ_20201202_1_217_1_(PBF1_20201130_LDFZ_20201113_PBF1_20201110)-4min-PbTiO3-tipofendofgrowncrystal.raw
PbTiO3 flux grown crystalrawPDC_PTFI_20200618_1_217_4hr_blackxtal_PbTiO3.raw
PbTiO3 flux grown crystal 2rawPDC_PTFI_20200618_2_217-4hr-blackxtal-PbTiO3.raw
PbTiO3 flux grown crystal annealedrawPDC_TGA_20201210_1_217_(PTF1_20200916)-4hr-PbTiO3-slow-flux-DSC-O2.raw
PbTiO3 FZ grown crystal annealedrawPDC_TGA_20201214_1_217_(LDFZ_20201001_PBF1_20200925_LDFZ_20200922)-4hr-PbTiO3-FZ-DSC-O2.raw
PbTiO3 FZ grown crystal annealedrawPDC_LDFZ_20201202_1_217_1_(PBF1_20201130_LDFZ_20201113_PBF1_20201110)-4hr-PbTiO3-tipofendofgrowncrystal.raw
PbTiO3 FZ grown crystal annealedrawPDC_LDFZ_20200919_MKS_LP_PbTiO3_FAST RUN_5-60_4hr.raw
SCXRD
ItemTypeFile
PbTiO3 flux crystalzipped folderxs2809a.zip
PbTiO3 FZ crystal initial collectionzipped folderxs2525a.zip
PbTiO3 FZ crystalzipped folderxs2826a_PbTiO3_light.zip
PbTiO3 flux crystal abs correct hklhklxs2809a.hkl
PbTiO3 FZ crystal abs correct hklhklxs2826a.hkl
PbTiO3 flux crystal CCDC submitted data cifcifPbTiO3-flux-publication.cif
PbTiO3 flux crystal CCDC submitted data fcffcfPbTiO3-flux-publication.fcf
PbTiO3 flux crystal CCDC submitted data cifcifPbTiO3-FZ-publication.cif
PbTiO3 flux crystal CCDC submitted data fcffcfPbTiO3-FZ-publication.fcf
TGA
ItemTypeFile
PbTiO3 flux xtalzipped folderLTO-flux-TGA.zip
PbTiO3 FZ xtalzipped folderLTO-FZ-TGA.zip