Utilizing complex oxide substrates to control carrier concentration in large-area monolayer MoS2 films

Xudong Zheng, Eli Gerber Jisung Park Don Werder Orrin Kigner, Eun-Ah Kim, Saien Xie, Darrell G. Schlom

Bandgap engineering is central to the design of heterojunction devices. For heterojunctions involving monolayer-thick materials like MoS2, the carrier concentration of the atomically thin film can vary significantly depending on the amount of charge transfer between MoS2 and the substrate. This makes substrates with a range of charge neutrality levels—as is the case for complex oxide substrates—a powerful addition to electrostatic gating or chemical doping to control the doping of overlying MoS2 layers. We demonstrate this approach by growing monolayer MoS2 on perovskite (SrTiO3 and LaAlO3), spinel (MgAl2O4), and SiO2 substrates with multi-inch uniformity. The as-grown MoS2 films on these substrates exhibit a controlled, reproducible, and uniform carrier concentration ranging from (1—4) ×1013 cm-2, depending on the oxide substrate employed. The observed carrier concentrations are further confirmed by our density-functional theory calculations based on ab initio mismatched interface theory (MINT). This approach is relevant to large-scale heterostructures involving monolayer-thick materials in which it is desired to precisely control carrier concentrations for applications.

Growth Recipes
ItemTypeFile
2019 growthsxlsx1 PARADIM MOCVD Growth Log(2019).xlsx
2020 growthsxlsx2 PARADIM MOCVD Growth Log(2020.06-2020.12).xlsx
Figure 1c
ItemTypeFile
LaAlO3 datatifLAO.tif
SrTiO3 datatifSTO.tif
MgAl2O4 datatifMAO.tif
Figure 1d
ItemTypeFile
LaAlO3 datatifLAO 3.tif
SrTiO3 datatifSTO 3.tif
MgAl2O4 datatifMAO 3.tif
Figures 1e and 2a
ItemTypeFile
LaAlO3 Raman datatxtLAO Raman.txt
MgAl2O4 Raman datatxtMAO Raman.txt
SrTiO3 Raman datatxtSTO Raman.txt
LaAlO3 and SrTiO3 calibrationtxtSi peak calibration for LAO & STO Raman.txt
MgAl2O4 calibrationtxtSi peak calibration for MAO Raman.txt
Figures 1f and 3b
ItemTypeFile
LaAlO3 PL datatxtLAO PL.txt
MgAl2O4 PL datatxtMAO PL.txt
SiO2 PL datatxtSiO2 PL.txt
SrTiO3 PL datatxtSTO PL.txt
Figure 1h
ItemTypeFile
SiO2 Raman data 1txtSiO2 Raman 1.txt
SiO2 Raman data 2txtSiO2 Raman 2.txt
SiO2 Raman data 3txtSiO2 Raman 3.txt
SiO2 Raman data 4txtSiO2 Raman 4.txt
SiO2 Raman data 5txtSiO2 Raman 5.txt
Figure 1i
ItemTypeFile
LaAlO3 AFM dataibwAFM_MoS2 ON LAO.ibw
Figures 2b, 2c, and 4a
ItemTypeFile
LaAlO3 Raman datazipped folderLAO Raman.zip
MgAl2O4 Raman datazipped folderMAO Raman.zip
SiO2 Raman datazipped folderSiO2 Raman.zip
SrTiO3 Raman datazipped folderSTO Raman.zip
Figures 3c-3f, and 4a
ItemTypeFile
LaAlO3 PL datazipped folderLAO PL.zip
MgAl2O4 PL datazipped folderMAO PL.zip
SiO2 PL datazipped folderSiO2 PL.zip
SrTiO3 PL datazipped folderSTO PL.zip